

Ultrafast FPGA-based Digital Signal Processing

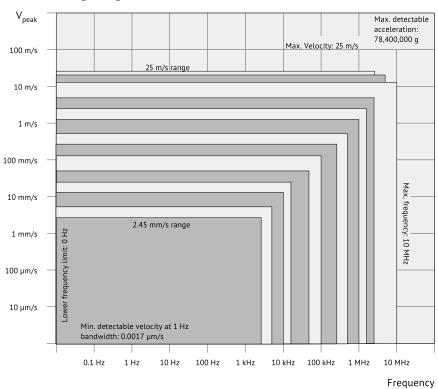
Optomet Vibrometers feature an end-to-end FPGA-based digital signal processing allowing a fully digital read-out of the measurement data. Digital signal processing avoids any drawbacks of analog demodulation which may result from component aging, temperature dependencies, noise and non-linearities. Significantly higher sensitivity, better resolution, and stability are the benefits of OptoMET's end-to-end digital signal processing. Extremely low noise levels produce precise results even from poorly reflecting measurement objects.

HIGHLIGHTS:

- Digital decoder
- 14 velocity measuring ranges
- Frequency range: 0 Hz 10 MHz
- Max. velocity up to 25 m/s
- Resolution down to 1.7 nm s⁻¹/VHz
- Max. linearity error: 0.5 %

High-End Master Velocity Decoder

All vibrometers series feature by default a velocity decoder and can be supplemented with a suitable displacement and/or acceleration decoder.


The D-VD-5N velocity decoder is extremely powerful. With its dynamic range from 1.7 nm/s to 25 m/s, a maximum permissible acceleration of 78,400,000 g, and a bandwidth of 10 MHz, the D-VD-5N decoder is the ideal tool for challenging applications in research and development.

Technical data

Pos.	Full Scale Output (Peak)	Typical Resolution*	Signal Frequency Range	Max. Acceleration
	m/s	μm s ⁻¹ / √Hz	kHz	g
1	0.00245	0.0017	2.5	3.9
2	0.0049	0.002	5	15.6
3	0.01225	0.003	10	78
4	0.0245	0.012	25	392
5	0.049	0.018	50	1,560
6	0.1225	0.024	100	7,800
7	0.245	0.05	250	39,200
8	0.49	0.10	500	156,000
9	1.225	0.20	1,000	784,000
10	2.45	0.29	1,500	2,350,000
11	4.9	0.47	2,500	7,840,000
12	12.25	2.4	10,000	78,400,000
13	19.6	1.2	5,000	62,700,000
14	25	0.64	2,500	40,000,000

^{*} The resolution is defined as the signal amplitude (rms) that produces 0 dB signal/noise ratio with 1 Hz spectral resolution at 50 % fmax.

Range diagram

