

Ultrafast FPGA-based Digital Signal Processing

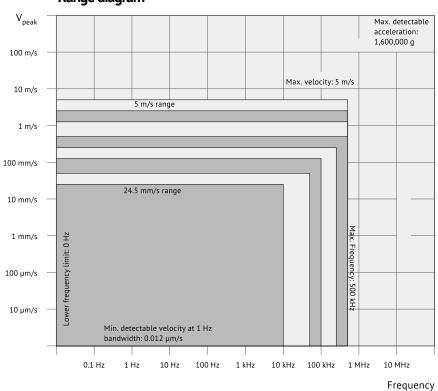
Optomet Vibrometers feature an end-to-end FPGA-based digital signal processing allowing a fully digital read-out of the measurement data. Digital signal processing avoids any drawbacks of analog demodulation which may result from component aging, temperature dependencies, noise and non-linearities. Significantly higher sensitivity, better resolution, and stability are the benefits of OptoMET's end-to-end digital signal processing. Extremely low noise levels produce precise results even from poorly reflecting measurement objects.

HIGHLIGHTS:

- Digital decoder
- 8 velocity measuring ranges
- Frequency range: 0 Hz 500 kHz*2
- Max. velocity up to 5 m/s
- Resolution down to 12 nm s⁻¹/VHz
- Max. linearity error: 0.5 %

Universal Basis Velocity Decoder

All vibrometers series feature by default a velocity decoder and can be supplemented with a suitable displacement and/or acceleration decoder.


The D-VD-1N velocity decoder is the versatile solution for various types of non-contact vibration metrology tasks. With its 8 velocity measuring ranges, it can measure up to 500 kHz*2 and thus well above the audible acoustic range. Digital signal processing provides excellent linearity and measuring accuracy.

Technical data

Pos.	Full Scale Output (Peak)	Typical Resolution*1	Signal Frequency Range	Max. Acceleration
	m/s	μm s ⁻¹ / √Hz	kHz	g
1	0.0245	0.012	25	392
2	0.049	0.018	50	1,560
3	0.1225	0.024	100*2	7,800 (6,200*3)
4	0.245	0.05	250*²	39,200 (12,500*3)
5	0.49	0.10	500*2	156,000 (25,000*3)
6	1.225	0.20	500* ²	392,000 (62,700*3)
7	2.45	0.29	500* ²	784,000 (125,000*3)
8	5	0.50	500*²	1,600,000 (256,000*3)

^{*1} The resolution is defined as the signal amplitude (rms) that produces 0 dB signal/noise ratio with 1 Hz spectral resolution at 50 % fmax.

^{*2} In Scan-Mode: max. frequency 100 kHz

^{*3} In Scan-Mode