

Ultrafast FPGA-based Digital Signal Processing

Optomet Vibrometers feature an end-to-end FPGA-based digital signal processing allowing a fully digital read-out of the measurement data. Digital signal processing avoids any drawbacks of analog demodulation which may result from component aging, temperature dependencies, noise and non-linearities. Significantly higher sensitivity, better resolution, and stability are the benefits of OptoMET's end-to-end digital signal processing. Extremely low noise levels produce precise results even from poorly reflecting measurement objects.

HIGHLIGHTS:

- Digital decoder
- 7 velocity measuring ranges
- Frequency range: 0 Hz 100 kHz
- Max. velocity up to 2.5 m/s
- Resolution down to 12 nm s⁻¹/VHz
- Max. linearity error: 0.5 %

Start Velocity Decoder

All vibrometers series feature by default a velocity decoder and can be supplemented with a suitable displacement and/or acceleration decoder.

The D-VD-ON velocity decoder is the versatile solution for various types of non-contact vibration metrology tasks. With its 8 velocity measuring ranges, it can measure up to 100 kHz and thus well above the audible acoustic range. Digital signal processing provides excellent linearity and measuring accuracy.

Technical data

Pos.	Full Scale Output (Peak)	Typical Resolution*1	Signal Frequency Range	Max. Acceleration
	m/s	μm s $^{-1}$ / \sqrt{Hz}	kHz	g
1	0.0245	0.012	25	392
2	0.049	0.018	50	1,560
3	0.1225	0.024	100	7,800
4	0.245	0.05	100	15,600
5	0.49	0.10	100	31,300
6	1.225	0.20	100	78,400
7	2.5	0.29	100	160,000

^{*1} The resolution is defined as the signal amplitude (rms) that produces 0 dB signal/noise ratio with 1 Hz spectral resolution at 50 % fmax.

^{*2} In Scan-Mode: max. frequency 80 kHz

^{*3} In Scan-Mode