LASER VIBROMETRY

Digital Displacement Decoder D-DD-0N

Ultrafast FPGA-based Digital Signal Processing

Optomet Vibrometers feature an end-to-end FPGA-based digital signal processing allowing a fully digital read-out of the measurement data. Digital signal processing avoids any drawbacks of analog demodulation which may result from component aging, temperature dependencies, noise and non-linearities. Significantly higher sensitivity, better resolution, and stability are the benefits of OptoMET's end-to-end digital signal processing. Extremely low noise levels produce precise results even from poorly reflecting measurement objects.

HIGHLIGHTS:	Start Displacement Decoder
- Digital decoder	All vibrometers series feature by default a velocity decoder and can be supplemented with a suitable displacement and/or acceleration decoder.
- 19 displacemert measuring ranges	The D-DD-ON displacement decoder is a versatile solution for various applications in noncontact vibration measurement. It features 19 displacement measuring ranges and can measure up to 100 kHz with a maximum velocity of the measured object of $2.5 \mathrm{~m} / \mathrm{s}$. Digital signal processing provides excellent linearity and measuring accuracy. Required velocity decoder: D-VD-ON
- Frequency range: DC bis 100 kHz	
- Max. velocity up to $2.5 \mathrm{~m} / \mathrm{s}$	
- Resolution* down to 50 femtometers	
	* The resolution is defined as the signal amplitude (rms) that produces 0 dB signal/noise ratio with 1 Hz spectral resolution at 50% fmax.

Technical data

Pos.	Full Scale Output peak to peak $\mu \mathrm{m}$	Signal Frequency Range kHz	Max. Velocity m / s
1	0.245	$0 . . .100$	2.5
2	0.49	$0 . . .100$	2.5
3	0.98	$0 . . .100$	2.5
4	2.45	0 ... 100	2.5
5	4.9	0 ... 100	2.5
6	9.8	$0 \ldots 100$	2.5
7	24.5	$0 . . .100$	2.5
8	49	$0 . . .100$	2.5
9	98	$0 \ldots 100$	2.5
10	245	$0 . . .100$	2.5
11	490	$0 \ldots 100$	2.5
12	980	$0 \ldots 100$	2.5
13	2,450	0 ... 100	2.5
14	4,900	$0 \ldots 100$	2.5
15	9,800	$0 \ldots 100$	2.5
16	24,500	0 ... 100	2.5
17	49,000	0 ... 100	2.5
18	98,000	0 ... 100	2.5
19	245,000	$0 \ldots 100$	2.5

