

Ultrafast FPGA-based Digital Signal Processing

Optomet Vibrometers feature an end-to-end FPGA-based digital signal processing allowing a fully digital read-out of the measurement data. Digital signal processing avoids any drawbacks of analog demodulation which may result from component aging, temperature dependencies, noise and non-linearities. Significantly higher sensitivity, better resolution, and stability are the benefits of OptoMET's end-to-end digital signal processing. Extremely low noise levels produce precise results even from poorly reflecting measurement objects.

HIGHLIGHTS:

- Digital Decoder
- 14 acceleration measuring ranges
- Max. frequency up to 25 MHz
- Max. acceleration 32,000,000 g
- Best acceleration resolution 1.8 µg / √Hz*

High-End Acceleration Decoder 25 MHz

All vibrometers series feature by default a velocity decoder and can be supplemented with a suitable displacement and/or acceleration decoder.

The D-AD-5-25 expands the frequency bandwidth up to 25 MHz, is especially used for ultrasonic applications.

Required velocity decoder: D-VD-5-25

* The resolution is defined as the signal amplitude (rms) that produces 0 dB signal/noise ratio with 1 Hz spectral resolution at 50 % fmax.

Technical data

Pos.	Full Scale Output (Peak)	Max. Frequency	Max. Velocity
	g	kHz	m/s
1	1.6	2.5	10
2	6.4	5	10
3	32	10	10
4	160	25	10
5	640	50	10
6	3,200	100	10
7	16,000	250	10
8	64,000	500	10
9	320,000	1,000	10
10	960,000	1,500	10
11	3,200,000	2,500	10
12	32,000,000*2	25,000	10*1
13	25,600,000	5,000	10
14	16,000,000	2,500	10

 $^{^{\}ast 1}$ Velocity limited to 0.5 m/s at frequencies above 10 MHz.

 $^{^{\}ast 2}$ Acceleration limited to 7,680,000 g at frequencies above 10 MHz.